S-O stretches in SOF₂ and SOCl₂ occur at 1312 and 1229 cm⁻¹, respectively.²² Kagarise²³ was able to demonstrate a linear relationship between carbonyl stretching frequency and the sum of the electronegativity values (Gordy scale²⁴) of atoms X and Y in molecules of the type XCOY. However, when this was applied to structurally similar sulfinyl compounds,²⁵ the points fell on a smooth curve and it was noted that changes in electronegativities of substituents in XSOY had smaller effects on S-O stretching frequency than on C-O analogs. This is in agreement with Moffitt²⁶ who showed that there is a relatively small variation in bond order in many XSOY compounds. When the electronegativities^{22.23} of the trifluoromethylsulfinyl halides are superimposed on this curve, the absorption bands at 1268, 1238, and 1235 cm⁻¹ for CF₃S(O)F, CF₃S(O)Cl, and $CF_3S(O)Br$, respectively, correspond to the S–O stretching frequency. By the same process, bands at 1260 and 1258 cm⁻¹ in the spectra of $C_2F_5S(O)F$ and $i-C_3F_7S(O)F$ are attributable to S-O stretch. Based

(22) D. Barnard, J. M. Fabian, and H. P. Koch, J. Chem. Soc., 2442 (1949).

(23) R. E. Kagarise, J. Am. Chem. Soc., 77, 1377 (1955).

(24) W. Gordy, J. Chem. Phys., 14, 305 (1946).
 (25) H. H. Szmant and W. Emerson, J. Am. Chem. Soc., 78, 454

(1956).

(26) W. Moffitt, Proc. Roy. Soc. (London), A200, 409 (1950).

on the above, CF asymmetric stretching frequencies are assigned to 1227, 1216, and 1205 cm^{-1} and symmetric bands to 1147, 1123, and 1116 cm⁻¹ in CF₃S(O)F, CF₃S-(O)Cl, and $CF_3S(O)Br$, respectively. As the size and electronegativity of the substituent halide increase, there is a concomitant decrease in the S-O and asymmetric and symmetric C-F stretching frequencies. This decrease is observed for asymmetric and symmetric S-O stretch in CF₃SO₂F and CF₃SO₂Cl⁹ at 1463 and 1239 cm⁻¹ and 1439 and 1239 cm⁻¹, respectively, and, from this work, for CF₃SO₂Br at 1424 and 1236 cm⁻¹. For CF₃SBr, by comparison with CF₃SCl,⁸ bands at 1180 and 1116 are asymmetric and symmetric C-F stretches and the band at 760 is a CF_3 deformation. The characteristic broad band centered at approximately 748 cm⁻¹ in CF₃S(O)F, C₂F₅S(O)F and *i*-C₃- $F_7S(O)F$ is probably due to S-F stretch; however, CF_3 deformation occurs in this region.

Acknowledgment. Our gratitute is due the Office of Naval Research who generously supported this work. We thank Dr. M. Lustig, Rohm and Haas; Mr. B. J. Nist, University of Washington; Dr. F. Aubke, University of British Columbia; and Dr. W. Fox, Allied Chemical, for nuclear magnetic resonance spectra.

Additional Studies Concerning the Existence of "O₃F₃"

I. J. Solomon, J. N. Keith, A. J. Kacmarek, and J. K. Raney

Contribution from IIT Research Institute, Chicago, Illinois 60616. Received March 29, 1968

Abstract: Additional O¹⁷ and F¹⁹ data on the oxygen fluorides have been obtained. The reactions of the oxygen fluorides with boron trifluoride are also described. All of the evidence obtained supports the conclusion that " O_3F_2 " is actually a mixture of O_2F_2 and $(OOF)_n$.

Several oxygen fluorides have been reported, namely $OF_{2,1} O_2F_{2,2} O_3F_{2,3} O_4F_{2,4}$ and recently $O_5F_{2,3} O_4F_{2,4} O_5F_{2,4} O_5F_{2,4}$ and O_6F_{2} .⁵ The structures of OF_2 and O_2F_2 are well known, but very little is known about the higher oxygen fluorides. Recently, the structure and even the existence of "O₃F₂" have been subjects of considerable concern.

Malone and McGee⁶ applied cryogenic mass spectrometry to the problem and concluded that " O_3F_2 " consists of loosely bonded O₂F and OF radicals. Nebgen, et al.,7 studied the F¹⁹ nmr spectrum of "O₃F₂" and postulated an "O₃F₂" model consisting of O_2F_2 and interstitial oxygen. Previous work in our laboratories8 on both F19 and O17 nmr spectroscopy of

"O₃F₂" led us to conclude that the system is best explained as

$$(O_2F_2, O_4F_2)$$

$$\downarrow \uparrow$$

$$200F \longrightarrow O_2F_2 + O_2 \qquad (1)$$

We wish to report recent results that we believe further substantiate this conclusion.

Experimental Section

OF₂ was obtained from the Allied Chemical Corp. The other oxygen fluorides were prepared by using previously reported procedures.²⁻⁴ The O¹⁷-enriched OF₂ was obtained from the Texaco Research Center.

The nmr spectrometer used was the conventional Varian DP-60 equipped with a low-temperature wide-line dewar coil; the cooling system was altered slightly to obtain better temperature control and to allow rapid insertion of the sample. Cooling was achieved with gaseous nitrogen previously cooled by passage through a copper coil immersed in liquid nitrogen. The temperature was controlled by varying the flow of the nitrogen.

⁽¹⁾ P. Lebeau and A. Damiens, C. R. Acad. Sci., Paris, 185, 652

<sup>(1927).
(2)</sup> O. Ruff and W. Menzel, Z. Anorg. Allg. Chem., 229, 423 (1932).
(3) A. D. Kirshenbaum and A. V. Grosse, J. Amer. Chem. Soc., 81,

⁽⁴⁾ A. V. Grosse, A. G. Streng, and A. D. Kirshenbaum, ibid., 83, 1004 (1961).

⁽⁵⁾ A. G. Streng and A. V. Grosse, ibid., 88, 169 (1966).

 ⁽⁶⁾ T. J. Malone and H. A. McGee, J. Phys. Chem., 71, 3060 (1967).
 (7) J. W. Nebgen, F. I. Metz, and W. B. Rose, J. Amer. Chem. Soc.,

^{89, 3118 (1967).}

⁽⁸⁾ I. J. Solomon, J. K. Raney, A. J. Kacmarek, R. G. Maguire, and G. A. Noble, ibid., 89, 2015 (1967).

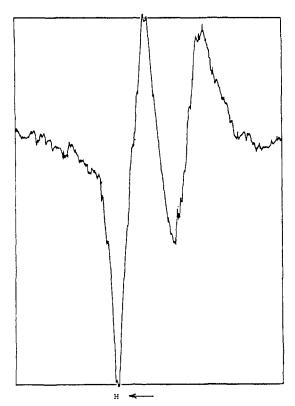


Figure 1. F^{19} nmr spectrum of 50 vol % solution of "O₃F₂" in OF₂.

Since using an internal standard for the calculation of chemical shifts was not possible, the magnetic field was calibrated before and after each experiment. A uniform drift throughout the experiment was assumed. Whenever possible, high-resolution data were taken, but, when excessive noise occurred, wide-line techniques were employed. To obtain high-resolution data, intensity ratios were computed by integration of signal areas. To obtain wide-line data, intensities were computed from the line widths and the signal heights. The F¹⁹ and the O¹⁷ spectra were observed at 56.4 and 8.13 Mc, respectively.

Dioxygenyl fluoroborate (O_2BF_4) was prepared by using previously described methods.^{9,10} The gas mixtures formed as byproducts in the preparation of O_2BF_4 were analyzed by passing them through (1) a series of -196° traps to remove any condensable gases, (2) a heated sodium chloride chamber to convert the fluorine (F_2) to chlorine (Cl_2), (3) -196° traps to remove the Cl_2 , and (4) an automatic Toepler pump to collect the O_2 . The components were measured as gases in calibrated volumes; the Cl_2 was equated to the F_2 in the original mixture.

Results and **Discussion**

F¹⁹ Nmr Spectroscopy. We previously reported⁸ that the F¹⁹ nmr spectrum of "O₃F₂" consists of an unsymmetrical line that was resolved with much difficulty into two overlapping lines. Nebgen, *et al.*,⁷ also determined the F¹⁹ nmr spectrum of "O₃F₂" but observed only one line. These workers postulated an "O₃F₂" model made up of O₂F₂ and interstitial oxygen. If this model were correct, the F¹⁹ nmr spectrum would consist of only one line. Therefore, we felt that an unequivocal answer to the question, "Does the F¹⁹ nmr spectrum of "O₃F₂" was extremely important.

The measurements on neat " O_3F_2 " were repeated several times, but, as before, two overlapping lines were

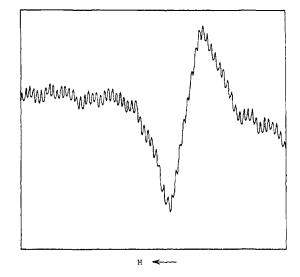


Figure 2. F^{19} nmr spectrum of 0.7 vol % OF₂ in O₂F₂.

always obtained. It was thought that the overlapping lines could be better resolved by obtaining the F¹⁹ nmr spectrum of "O₃F₂" dissolved in a solvent. The F¹⁹ nmr spectrum of a 50 vol % solution of "O₃F₂" in OF₂ (Figure 1) definitely shows that "O₃F₂" consists of two separate F¹⁹ lines. The F¹⁹ line due to the OF₂ (not shown in Figure 1) appeared in the region expected for OF₂ (approximately -250 ppm, relative to CFCl₃).

Malone and McGee⁶ applied cryogenic mass-spectrometric techniques to study oxygen fluorides. They were unable to obtain currents attributable to O_2F_2 , O_3F_2 , or O_4F_2 , but they did obtain peaks attributable to OF^+ , OF_2^+ , O_2^+ , O_2F^+ , O_2^+ , and F_2^+ . They concluded that " O_3F_2 " is basically an O_2F and an OF radical loosely bonded together and that it undergoes thermal decomposition to O_2F and OF *via* the reaction shown in eq 2.

$$2FO_2 OF \implies 2FO_2 \cdot \xrightarrow{fast} O_2F_2 + 2FO_2 \cdot \longrightarrow 2O_2F_2 + O_2$$
$$2OF_2 + O_2 \qquad (2)$$

These conclusions were based mainly on the fact that OF^+ and OF_2^+ were observed in their mass-spectrometric studies. Malone and McGee⁶ stated, "That the appearance potential of the OF⁺ and the ratio of OF^+/OF_2^+ confirm the parent substance to be OF_2 ." They believe that OF_2 can be accounted for in at least two ways. It could be formed as a by-product in the electrical discharge tube when "O₃F₂" is formed, and it could result from the decomposition of "O₂F₂" as shown in reaction scheme 2. Smaller amounts of OF⁺ and OF_2^+ than the other species were observed, but Malone and McGee⁶ did not measure their absolute amounts.

We added 0.7 vol % OF₂ to O_2F_2 and observed the F¹⁹ nmr line (Figure 2) due to this small amount of OF₂. "O₃F₂" was then allowed to decompose to O_2F_2 and other possible products while the sample was maintained at 115°K in the nmr cavity. No F¹⁹ signal due to OF₂ was observed, so it can be stated that if OF₂ is formed as a decomposition product of "O₃F₂" less than 0.7 vol % OF₂ is present. These observations are not surprising, since OF₂ has never been observed as a

⁽⁹⁾ I. J. Solomon, R. I. Brabets, R. K. Uenishi, J. N. Keith, and J. M. McDonough, *Inorg. Chem.*, 3, 457 (1964).
(10) J. N. Keith, I. J. Solomon, I. Sheft, and H. H. Hyman, *ibid.*, 7, 230 (1968).

decomposition product of " O_3F_2 " in our laboratory or in other studies.¹¹

 O^{17} Nmr Spectroscopy. Previous work in our laboratory⁸ produced a three-line O^{17} nmr spectrum for " O_3F_2 ." The largest line was definitely due to the O_2F_2 , and the other two lines, which were equally intense, were attributed to $(OOF)_n$. There are three possible O^{17} nmr spectra for the molecular species " O_3F_2 ." If all the oxygen atoms were similar, a oneline spectrum would result. If all the oxygen atoms were different, a three-line spectrum would result. And if two oxygen atoms were equivalent and one was different, a two-line spectrum in which one of the lines is twice as intense as the other would result. It was concluded that two equally intense O^{17} lines cannot account for the molecular species " O_3F_2 ."

We have obtained additional O¹⁷ nmr results that we believe substantiate our previous conclusion. Malone and McGee report⁶ that "O₃F₂" may contain foreign species such as ozone (O₃) and/or OF₂. The O¹⁷ nmr spectra of both O₃ and OF₂ were obtained. These results and a comparison of the O¹⁷ nmr spectra of O₂F₂ and (OOF)_n are present in Table I. The spec-

Table I. O¹⁷ Nmr Data for Various Compounds

Compound	O ¹⁷ position	Chemical shift relative to H ₂ O ¹⁷ , ppm	
O_2F_2	O ₂ ¹⁷ F ₂	-647ª	
$(O_2F)_n$?	-971	
		-1512	
O3	O-O ¹⁷ -O	-1032	
	O ¹⁷ -O-O ¹⁷	-1598	
OF_2	$O_{17}F_2$	-830^{a}	

^a Triplet.

trum of OF₂ consisted of a single line, and, as expected, this line was a triplet due to O¹⁷–F¹⁹ spin coupling with the two fluorine atoms. From these results it can be concluded that none of the O¹⁷ lines previously reported for "O₃F₂" were OF₂ or O₃ lines.

We also determined that under ordinary conditions the oxygen atom of OF₂ does not exchange with those of either O₂F₂ or "O₃F₂." A solution containing 50 vol % O¹⁷-labeled "O₃F₂" and ordinary OF₂ was placed in the nmr cavity and maintained at 93°K for 30 min. No signal was observed for O¹⁷F₂. The "O₃¹⁷F₂" in the solution was then allowed to decompose to O₂¹⁷F₂; again, no signal was observed for O¹⁷F₂. The O₂¹⁷F₂ solution was warmed to room temperature to allow the O₂¹⁷F₂ to decompose to O₂ and F₂. The OF₂ was separated from the O₂ and the F₂ and replaced in the nmr cavity; no O¹⁷F₂ signal was observed.

Malone and McGee⁶ stated that they believe there is a rapid exchange of fluorine atoms in $O_2F_2-O_3F_2$ mixtures. They argued that this is reasonable in the light of their model of " O_3F_2 " consisting of loosely bonded O_2F and OF radicals. They compared this exchange to one proposed by Arkell.¹² When photolyzed in an O_2^{16} matrix at 4°K, O¹⁸F₂ yields O¹⁶F₂ and the amount of O¹⁸F₂ decreases. In this system, Arkell suggested an exchange mechanism involving " O_3F_2 ." Arkell used photolytic conditions, and his experiments are probably not comparable to either our work or that of Malone and McGee.⁶

Reactions of Oxygen Fluorides with Boron Trifluoride. The existence of the dioxygenyl ion (O_2^+) in dioxygenyl hexafluoroplatinate¹³ and in the salts of the group V fluorides¹⁴ is well established. It has also been shown⁹ that the product of the reaction of O_2F_2 with boron trifluoride (BF₃) is O_2BF_4 .

$$2O_2F_2 + 2BF_3 \longrightarrow 2O_2BF_4 + F_2 \tag{4}$$

 O_2BF_4 can also be formed ¹⁰ by allowing O_4F_2 to react with BF_3 .

$$O_4F_2 + 2BF_3 \longrightarrow 2O_2BF_4 \tag{5}$$

It was concluded ¹⁰ that in both cases BF_3 reacts with O_2F to form O_2BF_4 . The reaction of O_4F_2 with BF_3 does not release F_2 but the reaction of O_2F_2 with BF_3 must be accompanied by the rupture of an O-F bond and the release of F_2 . Reactions of this type are very useful in further elucidating the " O_3F_2 " system.

 O_4F_2 , " O_3F_2 ," and O_2F_2 were allowed to react with BF₃ to form O_2BF_4 ; the composition and the amount of the by-product gases were monitored (Table II).

Table II. By-Products Formed in the Preparation of O₂BF₄

Ratio O2:F2 charged	BF3 consumed, cc	F ₂ formed, cc	O₂ formed, cc	Ratio BF $_3$ con- sumed: F $_2$ formed	Theoret ratio ^a BF_3 con- sumed : F_2 formed
0.94 1.49 1.96	61.0 16.5	29.0 16.5 1.4	0.9 0.4 2.3	2.10 5.40 46.4	2 6 ∞

 a Theoretical ratios assume eq 4 for $O_2F_2,$ eq 5 for $O_4F_2,$ and eq 6 for " $O_3F_2.$ "

The results obtained with O_2F_2 and O_4F_2 were entirely consistent with eq 4 and 5. The small amount of O_2 were entirely consistent with eq 4 and 5. The small amount of O_2 formed was the result of the unavoidable decomposition of a small amount of O_2F_2 and O_4F_2 during handling; it is interesting that approximately the same small percentage of O_2 was observed in the reaction of " O_3F_2 " with BF₃, and the results are consistent with the following equation.

$$3^{"}O_3F_2" + 6BF_3 \longrightarrow 6O_2BF_4 + F_2 \tag{6}$$

If the assumption that " O_3F_2 " is a 1:1 mixture of O_4F_2 and O_2F_2 were made, the stoichiometry obtained by adding eq 4 and 5 would be expected. Even of more importance is the fact that no O_2 was observed in the formation of O_2BF_4 from " O_3F_2 " and BF_3 . The fact that " O_3F_2 " reacts with BF_3 to form O_2BF_4 and F_2 as depicted in reaction eq 6 is therefore completely consistent with a model of " O_3F_2 " consisting of a 1:1 mixture of O_4F_2 and O_2F_2 .

This information will now be considered in terms of Malone's⁶ and Nebgen's proposed models for " O_3F_2 ."

- (13) N. Bartlett and D. H. Lohmann, J. Chem. Soc., 5233 (1962).
- (14) A. R. Young, II, T. Hirata, and S. I. Morrow, ibid., 86, 20 (1964).

⁽¹¹⁾ A. G. Streng, Chem. Rev., 63, 607 (1963).

⁽¹²⁾ A. Arkell, J. Amer. Chem. Soc., 87, 4057 (1965).

Malone and McGee⁶ proposed an " O_3F_2 " model consisting of loosely bonded O_2F and OF radicals. They proposed that O_2F and OF are in equilibrium with " O_3F_2 ."

$$FO_2 \cdot OF \implies O_2F + OF$$
 (7)

The $\cdot O_2F$ would be expected to react with BF₃ and release OF radicals. Subsequent decomposition of the OF radicals would then be expected to result in F₂, O₂, and perhaps OF₂. However, neither O₂ nor OF₂ was observed.

If Nebgen's⁷ model consisting of O_2F_2 and interstitial oxygen is assumed correct, the reaction of " O_3F_2 " with BF₃ to form O_2BF_4 should result in the release of the loosely bound interstitial oxygen. However, the reaction of " O_3F_2 " with BF₃ to form O_2BF_4 releases only F_2 , not O_2 .

Conclusion

In view of all the evidence obtained to date, it is concluded that " O_3F_2 " and its decomposition to O_2F_2 can best be explained by eq 1. It has been shown⁸ that " O_3F_2 " has a three-line O¹⁷ nmr spectrum. The largest line is definitely O_2F_2 , and the other two lines, which have equal intensities, are attributed to $(OOF)_n$. The present work shows that these two lines are not due to either O₃ or OF₂. Explaining two equally intense O¹⁷ lines in terms of the molecular species "O₃F₂" is not possible. Therefore, we believe that the model prepared by Malone and McGee⁶ cannot be correct. The model proposed by Nebgen and coworkers7 can be correct only if there are two nonequivalent interstitial oxygen atoms and the O^{17} nmr line due to the O_2F_2 part of Nebgen's⁷ model is the same as the O¹⁷ lines of independently prepared O₂F₂. Also, the F¹⁹ nmr spectrum expected from the Nebgen⁷ model should contain only one line, but the present work shows that

" O_3F_2 " exhibits two F¹⁹ lines. The results of the reaction of " O_3F_2 " with BF₃ are also inconsistent with the models proposed by either Malone and McGee⁶ and Nebgen, *et al.*⁷ For these reasons all the evidence supports the conclusion that " O_3F_2 " is actually a mixture of O_2F_2 and (OOF)_n.

A question that could be asked is "Why is it possible to prepare O_2F_2 and $(OOF)_n$ (or O_4F_2) but not " O_3F_2 ?" In considering the facts, the answer is evident. The heats of dissociation of O_2 into 2O and F_2 into 2F are 119.1 and 37.7 kcal/mole, respectively.¹⁵ The formation of " O_3F_2 " requires the dissocation of O_2 or the formation of the oxygen atoms by some other process. It has been shown that relatively little or no O_3 is formed under the conditions used for the preparation of " O_3F_2 ." Of course, the formation of O_3 also requires the formation of oxygen atoms. The formation of oxygen atoms, however, is not a necessary event for forming either O_2F_2 or O_4F_2 .

$$F_2 \longrightarrow 2F \cdot$$
 (8)

$$F \cdot + O_2 \longrightarrow O_2 F$$
 (9)

$$O_2F + F \cdot + M \longrightarrow O_2F_2 \tag{10}$$

$$2O_2F + M \longrightarrow O_4F_2 \tag{11}$$

" O_3F_2 " is probably not formed under the present conditions, but it should not be implied from this work that it is not capable of existence. If conditions for producing O atoms or OF radicals were used, preparation of molecular O_3F_2 may be possible. Experiments of this type are being carried out.

Acknowledgment. Financial support was provided by the Director of Engineering Sciences, SREP, Air Force Office of Scientific Research, under Contract No. F44620-69-c-0039.

(15) "JANAF Thermochemical Tables with Revisions," Dow Chemical Co., Midland, Mich.,